Seeing is believing: The importance of visualization in real-world machine learning applications
نویسندگان
چکیده
The increasing availability of data sets with a huge amount of information, coded in many different features, justifies the research on new methods of knowledge extraction: the great challenge is the translation of the raw data into useful information that can be used to improve decisionmaking processes, detect relevant profiles, find out relationships among features, etc. It is undoubtedly true that a picture is worth a thousand words, what makes visualization methods be likely the most appealing and one of the most relevant kinds of knowledge extration methods. At ESANN 2011, the special session “Seeing is believing: The importance of visualization in real-world machine learning applications” reflects some of the main emerging topics in the field. This tutorial prefaces the session, summarizing some of its contributions, while also providing some clues to the current state and the near future of visualization methods within the framework of Machine Learning.
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملTrust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic
Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملSome Perspectives of Machine Repair Problems
In this article, we survey machine repair problems (MRP) with an emphasis on historical developments of queuing models of practical importance. The survey proceeds historically, starting with developments in 1985, when the first published review on machine interference models appeared. We attempt to elaborate some basic MRP models of the real life congestion situations. The brief survey of some...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کامل